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Abstract 

The paper elucidates two views (models) of algorithmic 
problem solving. The first one is static; it is based on the 
identification of several principal dimensions of algo- 
rithmic problem solving. The second one is dynamic, i.e., 
it catalogs main steps in the process of solving a problem 
with a computer. The models are used to identify several 
important issues in teaching design and analysis of algo- 
rithms and to suggest ways of rectifying the shortcomings 
identified. 

1 Introduction 

Once the notion of algorithm came to be recognized as 
the cornerstone of computer science, a course on design 
and analysis of algorithms became a standard requirement 
in computer science curricula. Judging by the contents of 
widely used textbooks, such a course follows one of two 
alternatives in presenting the subject by grouping algo- 
rithms either by problem types (e.g., [10, 111) or by un- 
derlying design techniques (e.g., [3, 5, 8]). (There are 
also textbooks such as [4] that try to straddle the two ap- 
proaches.) Each of these two options has its obvious 
strengths and weaknesses [1]; for example, the second 
one is arguably more conducive to teaching design tech- 
niques. As for the analysis side, all the textbooks follow 
the well-established framework of asymptotic analysis of 
time-, and to a much lesser degree, space- efficiency. 

We will contend in this paper that, no matter which ap- 
proach is used, the established treatment of design and 
analysis of algorithms has serious defigiencies and limi- 
tatious. We will point out these deficiencies and limita- 
tions - -  and suggest ways to alleviate or eliminate them 
m in Section 4 of the paper after outlining two views of 
the algorithmic problem solving in Sections 2 and 3, re- 
spectively. _ . . . . . . . . . . . . . . . .  
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2 A Static View of Algorithmic Problem Solving 

One can easily identify a few major aspects (or dimensions) 
of algorithmic problem solving. They are: 

computational means (the principal choices of interest 
here are sequential vs. parallel computers; more exotic 
options include a human and such abstract devices as 
the 'luring machine) 

• exact vs. approximate solving ~ 

• deterministic vs. probabilistic paradigm 

• data structure(s) 

• algorithm design technique 

There are three dimensions that are applicable to an algo- 
ritlun in the analysis, as opposed to design, stage: 

• correctness (and a degree of error for an approximation 
algorithm) 

• efficiency (time and space) 

• clarity (we will consider "simplicity" to be synonymous 
with clarity"). 

Finally, there is one more dimension of algorithmic prob- 
lem solving: optimality. 

There are several reasons why one might be interested in 
solving a problem approximately. First, there are many 
important problems (e.g., solving nonlinear equations) that 
cannot be solved exactly by any algorithm. Second, avail- 
able algorithms for solving a problem exactly can be unac- 
ceptably slow (e.g., NP-hard problems). Third, one could 
be interested in finding an approximate solution to a prob- 
lem even if an exact solution can be found efficiently (e.g., 
one might want to solve the string-searching problem ap- 
proximately in order to identify possible misspellings of a 
given word). 
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3 A Dynamic View of Algorithmic Problem Solving be modeled by the diagram below: 

A dynamic view of solving a problem with a computer can 
; Ascertain the problem 

Decide on: 
computational means, 

exact vs. approximate solving, 
deterministic vs. probabilistic paradigm, 

data structure(s), 
algorithm design technique 

• Design an algoritlun 

,l 
Fineotune the algoritl~ 

Prove correctness 

,L 
Perform a mathematical analysis 

of the algorithm's efficiency 

1 
~ A s s e s s  the resulIg~ 

1 
Document the algorithm 

Decide on: 
a language, 

a compiler/interpreter, 
a machine 

• Implement the algorithm ~ 
! 

• th ~' , Test/prove e program s correctness 
! 

Perform an e~mpirical analysis 
of the algorithm's efficiency 

1 
~ _  Assess the resul~...~ 

Document the implementation and its results 
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Current Treatment and Possible Improvements 

Interpreting algorithms as solutions to problems is, of 
course, intrinsic to the notion of algorithm. However, 
in our opinion, this perspective needs to be empha- 
sized more strongly than is typically done. (In fact, 
one can argue that algorithmic problem solving is a 
broader topic than design and analysis of algorithms. 
An inspection of the list of dimensions of the static 
model and of the steps of the dynamic model would 
seem to support such a conclusion.) 

Emphasis on problem solving can be strengthened in 
several ways. First, organizing a course around de- 
sign techniques, which can be treated as problem 
solving strategies, would be more appropriate than or- 
ganizing the course around problem types. Second, 
all the aspects of algorithmic problem solving implied 
by the static and dynamic models should be covered. 
(We will elaborate on this point in more detail below.) 
Third, some general ideas about problem solving n 
along the lines of Polya's classic [9] - -  might enhance 
the course. Finally, more examples, especially from 
reaMife applications, ought to be presented. (Skiena's 
book [12] can be very useful here.) 

The process of algorithmic problem solving is not 
usually discussed in algorithm textbooks. In particu- 
lar, the implementation part of the process is almost 
always ignored, probably under the assumption that it 
has been covered in preceding programming courses. 

Though the dynamic (process) model above simply 
lists the common steps of algorithmic problem solv- 
ing, it has two benefits. First, it reminds students of 
the "obvious" steps of problem solving with a com- 
puter. Of course, as any model, this one does not per- 
fectly reflect reality. For example, for the sake of 
simplicity, we have decided against inclusion of the 
fine-tuning step in the programming stage of the pro- 
cess. We strongly advocate not the specifics of the 
dynamic model above but rather the fact that such a 
model needs to be discussed in an algorithm course. 

Second, and most important, the model emphasizes 
the point that getting a good algorithmic solution is an 
iterative process, which typically requires repeated 
rework along the way. Regrettably, most textbooks fail 
to make this point. Fortunately, some interesting and 
poignant examples have been published elsewhere 
(see, e.g., [2], [131). 

As for the many issues arising in the implementation 
stage of the process (see the entire bottom half of the 
dynamic model's diagram), they deserve at least a 

brief review, in our opinion. A recently published book 
by Kernigan and Pike [6] contains a lot of up-to-date 
information on these issues. 

Algorithm design is taught either by default by simply 
exposing students to well-known algorithms or b y  
grouping algorithms along a few general design tech- 
niques whose traditional classification has very serious 
shortcomings. 

There is an unfortunate dichotomy between our knowl- 
edge about general principles of algorithm design versus 
their analysis. While the latter has been firmly estab- 
lished for quite some time now, the former has been al- 
most completely neglected by computer science re- 
searchers. At the same time, it is easy to make the case 
that teaching algorithm design should have at least the 
same, if not a higher, priority than algorithm analysis. 
(After all, one needs to have an algorithm first before it 
can be analyzed!) 

There is some anecdotal evidence that issues of algo- 
rithm design have been starting to gain more attention. 
Thus, updates of several textbooks organized by design 
techniques have been published recently [3, 5, 8], while 
the textbooks organized by problem types usually in- 
clude nowadays a chapter reviewing major design 
strategies. These developments are obviously most wel- 
comed; however, no matter which of the two exposition 
options is pursued, it is imperative that a better taxon- 
omy of design techniques is followed. 

The commonly used list of design techniques consists of 
five strategies: divide-and-conquer, greedy approach, 
dynamic programming, backtracking, and branch-and- 
bound. Among several shortcomings of this taxonomy, 
the most glaring one is its inability to classify many im- 
portant algorithms (e.g., Euclid's algorithm, heapsort, 
hashing, Gaussian elimination). A much more versa- 
tile classification scheme has been recently proposed by 
Levitin [7]. It has a hierarchical structure that, on its 
highest level, divides the strategies into more general 
and less general ones. The first group consists of brute 
force, divide-and-conquer, decrease-and-conquer, and 
transform-and-conquer; the second one includes local 
search techniques (with greedy algorithms and im- 
provement methods as special cases), dynamic pro- 
gramming, and state-space-tree techniques (which in- 
clude backtracking and branch-and-bound). 

Fine-tuning of an algorithm is not discussed, at least 
systematically. 

By fine-tuning, we mean improving the implementation 
details of an algorithm's idea. Of course, many such 
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improvements should, by necessity, be intimately re- 
lated to the peculiarities of the algorithm in question. 
Still, a variety of standard "tricks" are well-known 
(see, e.g., [2]). Of particular interest and importance 
are, of course, adjustments that seek to optimize algo- 
rithms' innermost loops. In addition to some practical 
value as tools for improving algorithms' running time, 
their discussion goes to the heart of the asymptotic ef- 
ficiency framework and the nature of multiplicative 
(hidden) constants. 

Algorithm analysis is mostly limited to the well- 
established framework of time- (and, to a much lesser 
degree, space-) efficiency analysis. No other dimen- 
sion is considered systematically in analyzing algo- 
rithms. 

But the American Heritage Dictionary defines "analy- 
sis" as "the separation of an intellectual or substantial 
whole into its constituent parts for individual study" 
(the emphasis is added). Accordingly, the static 
model above explicates several dimensions of algo- 
rithmic problem solving, with efficiency being just 
one of them. Granted, efficiency is the dimension that 
we can analyze mathematically. But this fact should 
not prevent us from discussing the other dimensions 
as well. 

The computational model, determinism vs. randomi- 
zation, and the underlying data structure(s) can be, of 
course, identified immediately for an algorithm under 
study. But a discussion of making an alternative 
choice for one or more of these dimensions can be 
quite beneficial. (What will happen if the data struc- 
ture underlying the algorithm changes? Can the algo- 
rithm benefit from introducing a randomization step? 
How can the algorithm be implemented on a parallel 
computer?) Whether the algorithm always yields an 
exact solution may or may not be trivial for a student 
to answer. And the question about the design tech- 
nique the algorithm is based upon can have the double 
benefit of checking students' understanding of both 
the algorithm in question and the general design tech- 
niques. (A better taxonomy of algorithm design tech- 
niques can significantly expand the range of algo- 
rithms for which such a question has a meaningful an- 
swer.) 

Finally, clarity is probably the most controversial di- 
mension of an algorithm. Researchers in software en- 
gineering have been trying for years to come to grips 
with the closely related notion of complexity or com- 
prehensibility of a computer program. In particular, 
several metrics seeking to quantify it have been pro- 
posed, running the gamut from metrics based on the 

program's size to those seeking to quantify complexity 
of the program's control flow. Unfortunately, no meas- 
ures of this elusive quality have been agreed upon; 
therefore it is difficult to insist on a systematic discus- 
sion of clarity for each and every algorithm. Still, 
avoiding this dimension altogether is hardly productive 
either: for example, the principal attraction of brute- 
force algorithms is arguably due to their simplicity. Of 
course, the pursuit of simplicity/clarity may contradict 
the quest for efficiency. This provides a good opportu- 
nity to discuss the inevitability of occasional tradeoffs, 
which are a landmark of any design activity. 

Finally, on the subject of tradeoffs, the important space- 
for-speed one is barely mentioned in modern algorithm 
textbooks. This omission ought to be rectified. 

Empirical analysis of efficiency is usually mentioned 
only in passing, ff at all. In particular, a clear distinc- 
tion between timing (measuring the overall running 
time) and profiling (identifying bottlenecks) is not al- 
ways made. Means of empirical data presentation 
(tabular and graphical) and methods of their analysis 
are not usually reviewed. 

In our view, empirical analysis deserves more attention 
than it currently receives in algorithm textbooks. (In 
order to stress the importance of empirical analysis, we 
have included it as a standard step in our dynamic 
model above.) Though its limitations vis-/l-vis the 
mathematical analysis of efficiency are self-evident, so 
are its unique strengths. Besides, it provides a valuable 
opportunity to show students the empirical side of com- 
puter science (and to do so in the midst of a rather theo- 
retical course). In addition, it allows an instructor to 
expose students to working with empirical data - -  an 
important skill that many computer science students, in 
our experience, sorely lack. Programming projects in 
particular seem to present a natural and convenient way 
for implementing this task. 

Numerical analysis algorithms, especially from the area 
of continuous mathematics, are typically ignored (with 
the FFT algorithm being a notable exception). 

In the early days of computing, numerical analysis was, 
of course, the computer science course. Then it became 
one of the required courses and now seems to have 
reached the ignominious status of an mapopular elective 
in many computer science programs. Though this di- 
minishing interest clearly reflects the decreasing rela- 
tive importance of numerical computations for the in- 
dustry and research, the fact that a student may get a 
computer science degree with no exposure to numerical 
analysis is highly regrettable. 
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An algorithm course seems to be a natural vehicle for 
rectifying this situation. Besides, the inclusion of nu- 
merical analysis algorithms can serve two other pur- 
poses. First, the majority of problems from this do- 
main cannot be solved exactly by any algorithm, thus 
giving the strongest motivation possible for approxi- 
mate problem solving. Second, such algorithms can 
serve as useful examples of the applicability of general 
design techniques to the realm of approximate prob- 
lem solving (e.g., the bisection method and the 
method of false position as examples of decrease-and- 
conquer). 

Approximation and probabilistic algorithms are intro- 
duced with little if any regard for the general design 
techniques used in the introduction of other algo- 
rithms. 

This treatment obscures the understanding of ap- 
proximate and probabilistic problem solving as two 
different, orthogonal dimensions. One way to empha- 
size this point-of-view is to give (or ask students for) 
examples demonstrating all possible combinations of a 
design technique and these two dimensions. As an 
illustration, the following tree-like diagram gives such 
examples for the brute-force strategy: 

determin, selection sort 

exact~ 

brute 
m 

force 

probab. Las Vegas alg. for the n- 
queens problem [3, p. 355] 

- approx- 

determin, forward-difference numeri- 
cal differentiation 

probab, classical Monte-Carlo nu- 
merical integration 

Finally, the exciting area of algorithm visualization 
and animation has still not found its way into popular 
textbooks. 

This is both regrettable and surprising. It is regretta- 
ble because this area is undeniably attractive to stu- 
dents. It is surprising because the overwhelming in- 
terest in visual programming in general and Java in 
particular should have made algorithm visualization 
and animation a quite attractive component of algo- 
rithms courses. With the juggernaut of the Web, 
which has a number of sites with attractive algorithm 
animations, this neglect should disappear in the near 
future. 

5 Conclusion 

Two views of algorithmic problem solving have been expli- 
cated in the paper. The static view simply lists the main 
dimensions of algorithmic problem solving; the dynamic 
view indicates the principal steps in the process of solving 
problems with a computer. Though mundane, they raise 
several important issues about standard ways of presenting 
the subject in courses on design and analysis of algorithms. 
The paper has pointed out these issues and made specific 
suggestions about ways of addressing them. Given the im- 
portance of the topic, the author hopes that the paper will 
initiate a discussion about the issues raised in the paper. 
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