
www.manaraa.com

Design and Analysis of Algorithms Reconsidered

Anany Levitin
Department of Computing Sciences

Villanova University
Villanova, PA 19085, USA

anany.levitin@villanova.edu

Abstract

The paper elucidates two views (models) of algorithmic
problem solving. The first one is static; it is based on the
identification of several principal dimensions of algo-
rithmic problem solving. The second one is dynamic, i.e.,
it catalogs main steps in the process of solving a problem
with a computer. The models are used to identify several
important issues in teaching design and analysis of algo-
rithms and to suggest ways of rectifying the shortcomings
identified.

1 Introduction

Once the notion of algorithm came to be recognized as
the cornerstone of computer science, a course on design
and analysis of algorithms became a standard requirement
in computer science curricula. Judging by the contents of
widely used textbooks, such a course follows one of two
alternatives in presenting the subject by grouping algo-
rithms either by problem types (e.g., [10, 111) or by un-
derlying design techniques (e.g., [3, 5, 8]). (There are
also textbooks such as [4] that try to straddle the two ap-
proaches.) Each of these two options has its obvious
strengths and weaknesses [1]; for example, the second
one is arguably more conducive to teaching design tech-
niques. As for the analysis side, all the textbooks follow
the well-established framework of asymptotic analysis of
time-, and to a much lesser degree, space- efficiency.

We will contend in this paper that, no matter which ap-
proach is used, the established treatment of design and
analysis of algorithms has serious defigiencies and limi-
tatious. We will point out these deficiencies and limita-
tions - - and suggest ways to alleviate or eliminate them
m in Section 4 of the paper after outlining two views of
the algorithmic problem solving in Sections 2 and 3, re-
spectively. _

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advent
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3•00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/0010003.. .$5.00

2 A Static View of Algorithmic Problem Solving

One can easily identify a few major aspects (or dimensions)
of algorithmic problem solving. They are:

computational means (the principal choices of interest
here are sequential vs. parallel computers; more exotic
options include a human and such abstract devices as
the 'luring machine)

• exact vs. approximate solving ~

• deterministic vs. probabilistic paradigm

• data structure(s)

• algorithm design technique

There are three dimensions that are applicable to an algo-
ritlun in the analysis, as opposed to design, stage:

• correctness (and a degree of error for an approximation
algorithm)

• efficiency (time and space)

• clarity (we will consider "simplicity" to be synonymous
with clarity").

Finally, there is one more dimension of algorithmic prob-
lem solving: optimality.

There are several reasons why one might be interested in
solving a problem approximately. First, there are many
important problems (e.g., solving nonlinear equations) that
cannot be solved exactly by any algorithm. Second, avail-
able algorithms for solving a problem exactly can be unac-
ceptably slow (e.g., NP-hard problems). Third, one could
be interested in finding an approximate solution to a prob-
lem even if an exact solution can be found efficiently (e.g.,
one might want to solve the string-searching problem ap-
proximately in order to identify possible misspellings of a
given word).

16

www.manaraa.com

3 A Dynamic View of Algorithmic Problem Solving be modeled by the diagram below:

A dynamic view of solving a problem with a computer can
; Ascertain the problem

Decide on:
computational means,

exact vs. approximate solving,
deterministic vs. probabilistic paradigm,

data structure(s),
algorithm design technique

• Design an algoritlun

,l
Fineotune the algoritl~

Prove correctness

,L
Perform a mathematical analysis

of the algorithm's efficiency

1
~ A s s e s s the resulIg~

1
Document the algorithm

Decide on:
a language,

a compiler/interpreter,
a machine

• Implement the algorithm ~
!

• th ~' , Test/prove e program s correctness
!

Perform an e~mpirical analysis
of the algorithm's efficiency

1
~ _ Assess the resul~...~

Document the implementation and its results

17

www.manaraa.com

Current Treatment and Possible Improvements

Interpreting algorithms as solutions to problems is, of
course, intrinsic to the notion of algorithm. However,
in our opinion, this perspective needs to be empha-
sized more strongly than is typically done. (In fact,
one can argue that algorithmic problem solving is a
broader topic than design and analysis of algorithms.
An inspection of the list of dimensions of the static
model and of the steps of the dynamic model would
seem to support such a conclusion.)

Emphasis on problem solving can be strengthened in
several ways. First, organizing a course around de-
sign techniques, which can be treated as problem
solving strategies, would be more appropriate than or-
ganizing the course around problem types. Second,
all the aspects of algorithmic problem solving implied
by the static and dynamic models should be covered.
(We will elaborate on this point in more detail below.)
Third, some general ideas about problem solving n
along the lines of Polya's classic [9] - - might enhance
the course. Finally, more examples, especially from
reaMife applications, ought to be presented. (Skiena's
book [12] can be very useful here.)

The process of algorithmic problem solving is not
usually discussed in algorithm textbooks. In particu-
lar, the implementation part of the process is almost
always ignored, probably under the assumption that it
has been covered in preceding programming courses.

Though the dynamic (process) model above simply
lists the common steps of algorithmic problem solv-
ing, it has two benefits. First, it reminds students of
the "obvious" steps of problem solving with a com-
puter. Of course, as any model, this one does not per-
fectly reflect reality. For example, for the sake of
simplicity, we have decided against inclusion of the
fine-tuning step in the programming stage of the pro-
cess. We strongly advocate not the specifics of the
dynamic model above but rather the fact that such a
model needs to be discussed in an algorithm course.

Second, and most important, the model emphasizes
the point that getting a good algorithmic solution is an
iterative process, which typically requires repeated
rework along the way. Regrettably, most textbooks fail
to make this point. Fortunately, some interesting and
poignant examples have been published elsewhere
(see, e.g., [2], [131).

As for the many issues arising in the implementation
stage of the process (see the entire bottom half of the
dynamic model's diagram), they deserve at least a

brief review, in our opinion. A recently published book
by Kernigan and Pike [6] contains a lot of up-to-date
information on these issues.

Algorithm design is taught either by default by simply
exposing students to well-known algorithms or b y
grouping algorithms along a few general design tech-
niques whose traditional classification has very serious
shortcomings.

There is an unfortunate dichotomy between our knowl-
edge about general principles of algorithm design versus
their analysis. While the latter has been firmly estab-
lished for quite some time now, the former has been al-
most completely neglected by computer science re-
searchers. At the same time, it is easy to make the case
that teaching algorithm design should have at least the
same, if not a higher, priority than algorithm analysis.
(After all, one needs to have an algorithm first before it
can be analyzed!)

There is some anecdotal evidence that issues of algo-
rithm design have been starting to gain more attention.
Thus, updates of several textbooks organized by design
techniques have been published recently [3, 5, 8], while
the textbooks organized by problem types usually in-
clude nowadays a chapter reviewing major design
strategies. These developments are obviously most wel-
comed; however, no matter which of the two exposition
options is pursued, it is imperative that a better taxon-
omy of design techniques is followed.

The commonly used list of design techniques consists of
five strategies: divide-and-conquer, greedy approach,
dynamic programming, backtracking, and branch-and-
bound. Among several shortcomings of this taxonomy,
the most glaring one is its inability to classify many im-
portant algorithms (e.g., Euclid's algorithm, heapsort,
hashing, Gaussian elimination). A much more versa-
tile classification scheme has been recently proposed by
Levitin [7]. It has a hierarchical structure that, on its
highest level, divides the strategies into more general
and less general ones. The first group consists of brute
force, divide-and-conquer, decrease-and-conquer, and
transform-and-conquer; the second one includes local
search techniques (with greedy algorithms and im-
provement methods as special cases), dynamic pro-
gramming, and state-space-tree techniques (which in-
clude backtracking and branch-and-bound).

Fine-tuning of an algorithm is not discussed, at least
systematically.

By fine-tuning, we mean improving the implementation
details of an algorithm's idea. Of course, many such

18

www.manaraa.com

improvements should, by necessity, be intimately re-
lated to the peculiarities of the algorithm in question.
Still, a variety of standard "tricks" are well-known
(see, e.g., [2]). Of particular interest and importance
are, of course, adjustments that seek to optimize algo-
rithms' innermost loops. In addition to some practical
value as tools for improving algorithms' running time,
their discussion goes to the heart of the asymptotic ef-
ficiency framework and the nature of multiplicative
(hidden) constants.

Algorithm analysis is mostly limited to the well-
established framework of time- (and, to a much lesser
degree, space-) efficiency analysis. No other dimen-
sion is considered systematically in analyzing algo-
rithms.

But the American Heritage Dictionary defines "analy-
sis" as "the separation of an intellectual or substantial
whole into its constituent parts for individual study"
(the emphasis is added). Accordingly, the static
model above explicates several dimensions of algo-
rithmic problem solving, with efficiency being just
one of them. Granted, efficiency is the dimension that
we can analyze mathematically. But this fact should
not prevent us from discussing the other dimensions
as well.

The computational model, determinism vs. randomi-
zation, and the underlying data structure(s) can be, of
course, identified immediately for an algorithm under
study. But a discussion of making an alternative
choice for one or more of these dimensions can be
quite beneficial. (What will happen if the data struc-
ture underlying the algorithm changes? Can the algo-
rithm benefit from introducing a randomization step?
How can the algorithm be implemented on a parallel
computer?) Whether the algorithm always yields an
exact solution may or may not be trivial for a student
to answer. And the question about the design tech-
nique the algorithm is based upon can have the double
benefit of checking students' understanding of both
the algorithm in question and the general design tech-
niques. (A better taxonomy of algorithm design tech-
niques can significantly expand the range of algo-
rithms for which such a question has a meaningful an-
swer.)

Finally, clarity is probably the most controversial di-
mension of an algorithm. Researchers in software en-
gineering have been trying for years to come to grips
with the closely related notion of complexity or com-
prehensibility of a computer program. In particular,
several metrics seeking to quantify it have been pro-
posed, running the gamut from metrics based on the

program's size to those seeking to quantify complexity
of the program's control flow. Unfortunately, no meas-
ures of this elusive quality have been agreed upon;
therefore it is difficult to insist on a systematic discus-
sion of clarity for each and every algorithm. Still,
avoiding this dimension altogether is hardly productive
either: for example, the principal attraction of brute-
force algorithms is arguably due to their simplicity. Of
course, the pursuit of simplicity/clarity may contradict
the quest for efficiency. This provides a good opportu-
nity to discuss the inevitability of occasional tradeoffs,
which are a landmark of any design activity.

Finally, on the subject of tradeoffs, the important space-
for-speed one is barely mentioned in modern algorithm
textbooks. This omission ought to be rectified.

Empirical analysis of efficiency is usually mentioned
only in passing, ff at all. In particular, a clear distinc-
tion between timing (measuring the overall running
time) and profiling (identifying bottlenecks) is not al-
ways made. Means of empirical data presentation
(tabular and graphical) and methods of their analysis
are not usually reviewed.

In our view, empirical analysis deserves more attention
than it currently receives in algorithm textbooks. (In
order to stress the importance of empirical analysis, we
have included it as a standard step in our dynamic
model above.) Though its limitations vis-/l-vis the
mathematical analysis of efficiency are self-evident, so
are its unique strengths. Besides, it provides a valuable
opportunity to show students the empirical side of com-
puter science (and to do so in the midst of a rather theo-
retical course). In addition, it allows an instructor to
expose students to working with empirical data - - an
important skill that many computer science students, in
our experience, sorely lack. Programming projects in
particular seem to present a natural and convenient way
for implementing this task.

Numerical analysis algorithms, especially from the area
of continuous mathematics, are typically ignored (with
the FFT algorithm being a notable exception).

In the early days of computing, numerical analysis was,
of course, the computer science course. Then it became
one of the required courses and now seems to have
reached the ignominious status of an mapopular elective
in many computer science programs. Though this di-
minishing interest clearly reflects the decreasing rela-
tive importance of numerical computations for the in-
dustry and research, the fact that a student may get a
computer science degree with no exposure to numerical
analysis is highly regrettable.

19

www.manaraa.com

An algorithm course seems to be a natural vehicle for
rectifying this situation. Besides, the inclusion of nu-
merical analysis algorithms can serve two other pur-
poses. First, the majority of problems from this do-
main cannot be solved exactly by any algorithm, thus
giving the strongest motivation possible for approxi-
mate problem solving. Second, such algorithms can
serve as useful examples of the applicability of general
design techniques to the realm of approximate prob-
lem solving (e.g., the bisection method and the
method of false position as examples of decrease-and-
conquer).

Approximation and probabilistic algorithms are intro-
duced with little if any regard for the general design
techniques used in the introduction of other algo-
rithms.

This treatment obscures the understanding of ap-
proximate and probabilistic problem solving as two
different, orthogonal dimensions. One way to empha-
size this point-of-view is to give (or ask students for)
examples demonstrating all possible combinations of a
design technique and these two dimensions. As an
illustration, the following tree-like diagram gives such
examples for the brute-force strategy:

determin, selection sort

exact~

brute
m

force

probab. Las Vegas alg. for the n-
queens problem [3, p. 355]

- approx-

determin, forward-difference numeri-
cal differentiation

probab, classical Monte-Carlo nu-
merical integration

Finally, the exciting area of algorithm visualization
and animation has still not found its way into popular
textbooks.

This is both regrettable and surprising. It is regretta-
ble because this area is undeniably attractive to stu-
dents. It is surprising because the overwhelming in-
terest in visual programming in general and Java in
particular should have made algorithm visualization
and animation a quite attractive component of algo-
rithms courses. With the juggernaut of the Web,
which has a number of sites with attractive algorithm
animations, this neglect should disappear in the near
future.

5 Conclusion

Two views of algorithmic problem solving have been expli-
cated in the paper. The static view simply lists the main
dimensions of algorithmic problem solving; the dynamic
view indicates the principal steps in the process of solving
problems with a computer. Though mundane, they raise
several important issues about standard ways of presenting
the subject in courses on design and analysis of algorithms.
The paper has pointed out these issues and made specific
suggestions about ways of addressing them. Given the im-
portance of the topic, the author hopes that the paper will
initiate a discussion about the issues raised in the paper.

References

[1] Baeza-Yates, R. Teaching Algoirthms. SIGACT News,
26 (December 1995), 51-59.

[2] Bentley, J. Programming Pearls. Addison-Wesley, 1986.

[3] Brassard, G. and Bratley, P. Fundamental of Algorith-
mics, Prentice-Hall, 1996.

[4] Cormen, T. et al. Introduction To Algorithms. MIT,
1992.

[5] Horowitz, et al. Computer Algorithms. Computer Sci
ence Press, 1996.

[6] Kernigan, B. and Pike, R. The Practice of Programming.
Addison-Wesley, 1999.

[7] Levitin, A. Do we teach the right algorithm design tech-
niques? in Proc. SIGCSE '99 (March 1999), 179-183.

[8] Neapolitan, R.and Naimipour, K. Foundations of Algo-
rithms. Jones and Bartlett, 2nd ed., 1997.

[9] Polya, G. How To Solve It. Princeton Univ. Press, 1957.

[10] Rawlins, J. Compared To What?: an Introduction to
the Analysis of Algorithms. Comp. Sc. Press, 1992.

[11] Sedgewick, R. Algorithms. Addison-Wesley, 1988.

[12] Skiena, S. The Algorithm Design Manual. Springer
Verlag, 1997.

[13] Vandervooerde, D. The maximal rectangle problem.
Dr. Dobb 's Journal, 23 (April 1998), 28-32.

20

